Robotics With the XBC

Controller
Session 8

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

Learning Goals

m The student will learn advanced

techniques
camera inc

s Bounding
m Filtering b

for working with the XBC
uding:

HoX data.

ob sizes.

m Displaying live video.
s Changing the camera display and config

settings.

m Getting and setting the white balance of the

XBC.

m Getting and setting the color models on the

XBC.

Getting Bounding Box Data

m track_bbox_left(int ch, inti);
m gets the pixel x coordinate of the leftmost pixel in the blob
m track_bbox_right(int ch, inti);
m gets the pixel x coordinate of the rightmost pixel in the blob
m track_bbox_top(int ch, inti);
m gets the pixel y coordinate of the topmost pixel in the blob
m track_bbox_bottom(int ch, inti);
m gets the pixel y coordinate of the bottommost pixel in the blob
m track_bbox_width(int ch, inti);

m gets the pixel x width of the bounding box of the blob. This is
equivalent to track_bbox_right - track_bbox_left

m track_bbox_height(int ch, inti);

m gets the pixel y height of the bounding box of the blob. This is
equivalent to track_bbox_bottom - track_bbox_top

Camera API Review

Remember to #use “xbccamlib.ic.”

Always call track_update() to get new tracking data!
B int track count(int ch);

m Returns the number of blobs on color channel ch the camera
is currently tracking.

N ine el sdAac @iac-l el A BiSacy b)) B
m Returns the size, in pixels, of blob number i on channel ch.
Wi gkl = [dnitd CIhp § e 1Y F
m Returns the x coordinate of the center of blob number i on
channel ch.
m 1At fonackl y (Ttnt chy § 1ot i) f;

m Returns the y coordinate of the center of blob number i on
channel ch.
B int track confidence(int ch, int 1);

m Returns the confidence value (0-100) that blob i on channel
ch is the correct color.

| . 4
e Higher numbers mean better confidence.

Why Use Bounding Box
Data?

m Allows more precise control when

positioning our robot in relation to an
object.

m Think of our challenge.

s We need to drive towards an orange object.
s We must stop a certain distance from it.

m We must then position ourselves in such a
way that the robot can grasp the ball.

s We can proportionally move the robot until
the edges of the object are exactly where we
need it and the bounding box width and
height are where we need them.

Printing Bounding Box Data

#use "xbccamlib.ic"

void main()

{
while(!'b_button())

{

track_update(); // We must always call track update to get new
tracking data!

display_clear();

printf("track_bbox_left: %d\n", track_bbox_left(0,0));
printf("track_bbox_right: %d\n", track_bbox_right(0,0));
printf("track_bbox_top: %d\n", track_bbox_top(0,0));
printf("track_bbox_bottom: %d\n", track_bbox_bottom(0,0));
printf("track_bbox_width: %d\n", track_bbox_width(0,0));
printf("track_bbox_height: %d\n", track_bbox_height(0,0));
sleep(0.2);

Filtering Out Small Blobs

m Vvoid track_set _minarea(int minarea);

m Sets the minimum area for a blob to be
tracked. Blobs below this size will be ignored.

m Default area is 100.
m Can be set interactively (see on screen
demo).
m int track_get_minarea();

m Returns the current minimum area of a blob
to be considered valid.

Showing Live Video on the
XBC.

m Vvoid track_show_display(int show_processed, int
frameskip, int channel_mask);
m show_processed controls what type of video is
displayed.
e 0 = raw video.
e Non zero = processed video.

m frameskip = # of frames skipped between updates.

e Lower numbers = smoother video but more processing
time.

m channel_mask = determines which channels (0-2) are
tracked.
e A three bit binary number. The LSB = channel 0O, the
middle bit controls channel 1 and the MSB is channel 2.
e Examples.
e Obl111 = Track all three channels.
e 0b101 = Track channels 0 and 2.
e 0b001 = Only track channel 2.

Example of Live Video

#use "xbccamlib.ic"

void main()

{
while(!'b_button())

{

//Show processed video with 5 frames
skipped and only show tracking data for
channels 0 and 2

track_show_display(1, 5, 0b101);
¥

»

Setting Camera Display
Options
m See onscreen demo to learn how to

set the XBC camera display options
interactively.

10

White Balance

m Different light sources contain differing amounts
of red and blue.

The sun and incandescent lights are much redder.
Fluorescent lights are much bluer.

Our eyes “auto correct” to different lights.
Cameras cannot.

e Objects will "appear” as different colors under
different lighting.

e Big problem in Botball!
The XBC defaults to auto setting the white balance.

We can interactively adjust the white balance of the
camera.

Use the Vision/Camera Config option from the XBC
menus to set the white balance.

See on screen demonstration.

11

Setting White Balance
Programmatically

m We can get and set white balance
information via IC.

m This rarely needs to be done.
m int camera_get_awb();

m Returns a 1 if AWB is on, otherwise 0.

m int camera_set_awb(int enable);

m Sets the AWB mode of the camera.
e 1 = turn AWB on.
e 0 = turn AWB off.

12

More on Setting the White
Balance.

m int camera_get_wb_color_temp(int color[]);

m Returns a 2 element array corresponding to
the red and blue levels.

m int camera_set_wb_color_temp(int color[]);

m color[] is a two element array which is the red
and blue levels to use.

m color[0] = red.

m color[1] = blue.
e 8 bit numbers (0-255).
e Lower numbers filter out more of that color.

m Returns a O for success and a -1 for failure.

13

// This program shows how to read and set the WB levels on the XBC
#use "xbccamlib.ic"

void main()

{

int color[2]; // This two element array will hold the red and blue color levels

display_clear();

printf("press B to get the current WB componets\n");

while(!'b_button()){ }; // wait for b button

beep();

sleep(1.0);

camera_get_wb_color_temp(color); // Fills two element array with the current WB levels
printf("Red=%d, Blue=%d\n", color[0], color[1]);// Print the current WB config levels

printf("press B to set a new WB level\n");
while(!'b_button()){ }; // wait for b button

beep();
sleep(1.0);

color[0] = 200; // This is the red level, we will see the image with LOTS of red in it.
color[1] = 0; //This is the blue level, filter out all blue!
camera_set_wb_color_temp(color); // Set the levels

printf("Red=%d, Blue=%d\n", color[0], color[1]); // Print them again to show they have
changed!
b

14

Color Model API’s

m We can dynamically change the color models stored inside
the XBC through IC.

m The XBC uses an HSV color model.
= Hue = “color.”
e Red ~= 0, Green ~= 100, Blue ~= 240.

m Saturation (range 0 - 223) is how pure and intense the
hue is.

e 0 = totally unsaturated, such as black, white, or
gray; 223 = totally saturated, such as neon orange,
fire-engine red.

e Color distinction is more robust, for pixels with high
Saturation.

s Value (range 0-223) is how dark or bright the pixel is:
0 = black, 223 = bright.

e color distinction is more robust, for pixels with h|gh
Value.

We Can See HSV Values
Dynamically on the XBC

m See on screen demonstration of
displaying HSV values for color
models.

16

The Color Model array

m Four element array:
m model[0] = hMin

s model[1] = hMax

m model[2] = sMin

m model[3] = vMin

Setting and Retrieving Color
Model Data.

m int color_get_model(int model_num, int
model[]);
m int model_num = color model number (0-2)

m int model[] = Four element array to hold
model data

m int color_set_model(int model_num, int
model[]);
m int model_num = color model number (0-2)

m int model[] = Four element array to hold
model data

18

//An example of dynamically reading and setting color models in IC on the XBC
#use "xbccamlib.ic"

void main()

{
int model[4]; //Holds our color models
color_get_model(0, model); //Fill our array with the current model data!
/>I<

model[0] = hMin

model[1] = hMax

model[2] = sMin

model[3] = vMin

*/
display_clear();

//Print out color values!
printf("H=(%d->%d) \nS>=%d\nV>=%d\n", model[0], model[1], model[2], model[3]);

//set out color model array to a "blue" color
model[0] = 201;
model[1] = 256;
model[2] = 161;
model[3] = 100;

printf("Changing color model!\n");

color_set_model(0,model); //Send the changes to the XBC

printf("New color model:\n");

printf("H=(%d->%d) \nS>=%d\nV>=%d\n", model[0], model[1], model[2], model[3]);

19

A Way to Do It Without
Arrays!

int color_get_ram_hmin(int model_num);
int color_get_ram_hmax(int model_num);
int color_get_ram_smin(int model_num);
int color_get_ram_smax(int model_num);
int color_get_ram_vmin(int model_num);
int color_get_ram_vmax(int model_num);

int color_set_ram_model(int model_num, int
hmin, int hmax, int smin, int vmin);

20

//An example of dynamically reading and setting color models in IC on the XBC
#use "xbccamlib.ic"

void main()

{
int model[4]; //Holds our color models
color_get_model(0, model); //Fill our array with the current model data!
/*

model[0] = hMin

model[1] = hMax

model[2] = sMin

model[3] = vMin

*/

display_clear();

//Print out color values!
printf("H=(%d->%d) \n5>=%d\nV>=%d\n", model[0], model[1], model[2], model[3]);

printf("Changing color model!'\n");

//send a new color model to the XBC!

color_set_ram_model(0, 201, 256, 161, 100);

printf("New color model:\n");

printf("H=(%d->%d) \nS5>=%d\nV>=%d\n", model[0], model[1], model[2], model[3]);

} 21

Tonight's Challenge
(Continued From Session 7)

1. You should have the arm built.

2. Using what you know about IC, simple XBC
vision, servos and motor control write a
program that will:

1. Seek out and find an orange ball.
2. Grasp and pick up the orange ball.

3. The solution to last weeks challenge will be

VERY helpful.

4. This is a big challenge, use incremental design!

22

Possible Sub-problems to
Solve

1. Go out a fixed distance turn around and return gmeasure
the repeatability by measuring the end points after
careful positioning of the starting point and direction.]

2. Go out to a ball/tribble at fixed position, about 3 feet
away, and grab it; return to starting pomt and drop it
[note that both grabbln and lifting is needed to return
reliably with the obJect?

3. Use vision to guide robot to a ball/tribble, about 3 feet
away within the camera FOV, and grab it; return to
starting ﬁomt and drop it. [Set a color model to respond
only to the target object; use the vision guidance
functlon from the 6th class to direct the robot. Note the
rel]atlon between the y track of a blob and how close it
is

23

